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Abstract

Closed form expressions are developed for Nusselt number variation in a thermally fully developed microtube flow, under a combined
influence of electroosmotic forces and imposed pressure gradients. The analysis takes care of the interaction amongst pressure driven
convection and Joule heating effects, in order to obtain the pertinent rate of heat transfer. While separate limiting conditions on the
asymptotic Nusselt number can be obtained for pure electroosmotic and solely pressure driven flows, relative influences of electrical
potential gradients and imposed pressure gradients acting in tandem are also critically analyzed, as a function of the tube radius nor-
malized with respect to the Debye length. Significant insights are also developed regarding the influence of adverse pressure gradients
on the thermal transport, in presence of aiding electroosmotic effects.
� 2005 Elsevier Ltd. All rights reserved.
Fluid flow in channels of micron or submicron length
scales has received serious attention from research commu-
nity in the recent past, primarily attributable to pathbreak-
ing developments in the areas of microelectronics and
MEMS, microfluidics-based biomedical separation and
diagnostic techniques, leading to various �lab-on-a-chip�
applications. In this respect, electroosmosis [1–6] has been
extensively used as a driving force to manipulate liquid
flows and to transport and control liquid samples of
nanovolumes in microfluidic devices, used for biochemical
and biotechnological applications as well as thermal man-
agement of microelectronics devices. However, so far, most
of the pertinent investigations have been primarily focused
on fluid flow behaviour, and not a great attention has been
paid on influence of flow behaviour on the thermal
transport.

Off late, it has been recognized that high electrical fields
employed for electroosmotic transport create both conduc-
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tion and convection currents in the liquid. The convection
current contributes to a net flow in the system, whereas the
conduction current generates a volumetric Joule heating.
Such Joule heating effects may not only cause local
enhancements in temperature values, but also can create
high temperature gradients. Previous studies have demon-
strated that that these effects can result in low column sep-
aration efficiency, reduction of analysis resolution, and
even loss of injected samples in biomedical applications.
In addition, a temperature rise can lead to decomposition
of thermally labile samples and formation of gas bubbles.
In microelectronic devices, such effects may also result in
inefficient heat dissipation, leading to local overheating
problems. Irrespective of such significant consequences,
thermal energy generation and the associated dissipation
mechanisms have received only very little attention in the
context of electroosmotic and pressure-driven microflows,
as apparent from reported research investigations.

In classical macro-flow domains, explicit analytical solu-
tions have been reported in the past for developing as well
as fully developed thermal transport problems with or
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without volumetric heat generation. In a pioneering work,
Sparrow et al. [7] have studied the effect of an arbitrary
generation term in pressure driven flows, and have ob-
tained analytical solutions for the pertinent heat transfer
characteristics. Houriuchi and Dutta [8], as well as Maynes
and Web [9], in their recent independent studies, have
reported analytical solutions of Nusselt number for steady
electroosmotic flows in two dimensional microchannels.
However, their studies have been restricted to pure electro-
osmotically driven flows only. In reality, on the other hand,
many microflows are combined electroosmotic and pres-
sure driven in nature. In the literature, however, no study
has been reported so far, providing close formed expres-
sions for Nusselt number in such complicated situations.

Aim of the present work, accordingly, is to develop ana-
lytical expressions for Nusselt number in a thermally fully
developed microtube flow, under a combined influence of
electroosmotic forces and imposed pressure gradients.
The analysis takes care of the interaction amongst pressure
driven convection and Joule heating effects, in order to ob-
tain the pertinent rate of heat transfer. This is expected to
provide significant theoretical insights in designing micro-
pumps, valves and mixers, by appealing to close formed
expressions depicting interrelationships between various
significant parameters that dictate overall heat transfer
rates through an effective Nusselt number.

In presence of an applied pressure gradient and an ap-
plied electric potential, equation for fully developed fluid
motion is as:
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dr2
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where vz is the axial velocity component, p is the pressure,
l is the viscosity, and Ez is the axial potential gradient. In
Eq. (1), qe is distribution of excess charge density, which
is obtained from a simultaneous solution of the Poisson�s
equation of potential distribution, in conjunction with
the Boltzmann equation of charge density distribution.
For low wall potential, the Debye–Hückel linearization is
valid [10]. In such circumstances, the wall zeta potential
(f) may assumed to be a constant and less than 3kBT
(where kB is the Bolzmann constant), and qe can be
expressed explicitly as a function of only r, f, and k (where
k is the Debye length). This leads to the following solution
of Eq. (1):
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where R is the radius of the microtube. In Eq. (2), the term
uHS represents the maximum possible electroosmotic veloc-
ity (Helmholtz–Smoluchowski electroosmotic velocity) for
a given applied potential field, and is described as:

uHS ¼ � ef
l
Ez ð2aÞ

where e is the permittivity of the medium.
Based on the above solution of velocity field, the ther-
mal energy equation can be used to obtain the temperature
distribution within the fluid. Under a simplified assumption
of constant thermophysical properties, the above equation
takes the following form:
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where q is the density, cp is the specific heat at constant
pressure, k is the thermal conductivity, r is the electrical
conductivity and / is the viscous dissipation function
(which is proportional to square of the velocity gradient).
In Eq. (3), the third term in RHS represents a volumetric
heat generation due to electric resistance heating (Joule
heating) and the next term represents a local volumetric
heating due to viscous dissipation. For an assessment of
relative order of magnitude of these two terms, one may
obtain a ratio of strength of Joule heating and viscous dis-
sipation as: Rv � rRlk

e2f2
. Typically, k � 10�8 m, r � 10�3 S/m,

l � 10�3 Ns/m2, e � 10�9 C/Vm, f � �100 mV, which
imply that Rv � 106R. Hence, it can be concluded that
the Joule heating dominates relative to viscous dissipation
if R is O(10 lm) or higher. For the present study, we as-
sume R to be larger than 10 lm, and the viscous dissipation
is, therefore, negligible in comparison to Joule heating
effects.

Further simplifications in Eq. (3) can be made by impos-
ing specific boundary conditions at the tube wall. Here, we
consider the boundary condition of a constant wall heat
flux ðq00wÞ, which together with a thermally fully developed
flow condition [11] yields:
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¼ oT w
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where Tm is the bulk mean temperature of flow and Tw is
the tube wall temperature distribution. Under these condi-
tions, Eq. (3) can be integrated twice to yield:

T ¼ qcpk
2

k
dTm

dz

� 1
4l

dp
dz

R2v2

4
� k2v4

16
� 3R2a2

16

� �
þuHS

v2�a2

4
� I0ðvÞ

I0ðaÞ
þ 1

n o
2
64

3
75

þ E2
zk

2rða2 � v2Þ
4k

þ T w ð4Þ

where v ¼ r
k and a ¼ R

k. Next, we appeal to the definition of
Tm as:
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and utilize the wall boundary condition as:
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h being the convective heat transfer coefficient, to obtain:
Nu2R ¼ hð2RÞ
k
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In Eq. (7), the term dTm

dz can be calculated by executing an
overall energy balance for an elemental control volume to
obtain:
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where _m ¼
R R
0
qð2prvzdrÞ. On simplification, we get
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Eq. (7), in conjunction with Eq. (9), establishes a closed
form expression for Nusselt number, in terms of significant
physical parameters governing the overall thermofluidic
transport. Based on these derivations, we can now analyze
a number of limiting special cases, some of which are as
follows:

(i) For a pure pressure driven flow (i.e., uHS = 0, Ez = 0),
we get, from Eq. (7), Nu2R = 48/11, which is a well-
known classical result for convective heat transfer
in a pressure-driven thermally fully developed flow
in a circular tube with a constant wall heat flux.

(ii) For a pure electroosmotic flow (dp/dz = 0), Eq. (7)
yields:
Fig. 1. Variation of Nu2R as a function of a, for different values of P. For
all curves, value of S is taken as 0.01.
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4
. The above leads to the

classical theoretical result of Nu2R = 8, as a ! 1.

(iii) Under a condition of no applied Ez field, there is a

steady state attained when the streaming current, Is,
is balanced by the conduction current, Ic, produced
in the reverse direction, i.e.,
I s þ Ic ¼ 0 ð11Þ
where I s ¼

R R
0
qevz2prdr, and Ic = rEzpR

2. From the
above expression, we get, for this case,
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In order to obtain deeper insights regarding variation of
the Nusselt number, the same is first plotted against the

ratio a, for different values of the parameter P ¼ �R2dp=dz
4luHS

(which is a measure of the relative significance of pressure
gradient and electroosmotic forces), as depicted in Fig. 1.

For all plots in Fig. 1, the parameter S ¼ E2
zrR
2q00w

, which is a

measure of the rate of heat generation due to Joule heating
relative to the rate of heat transfer at the tube wall, is kept
unaltered at S = 0.01. It can be observed from Fig. 1 that
at P = 0, the solution tends to the classical limit of 8 as
a ! 1. At lower values of P, Nu2R monotonically in-
creases with increase a, and tends to attain a saturation
as a ! 1. However, for higher values of P, the above sat-
uration seems to be initiated at lower values of a, and also
settles to lower values of asymptotic Nu2R. For P = 10,
however, an interesting feature is observed in a sense that



Fig. 3. Variation of Nu2R as a function of a, for different values of S, in
presence of an adverse pressure gradient (P = �0.5).

Fig. 2. Variation of Nu2R as a function of a, for different values of S. For
all curves, value of P is taken as 1.
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there occurs a local peak in the Nu2R value for approxi-
mately a = 2, beyond which Nu2R suddenly decreases,
and eventually settles to a stable value for higher values
of a. This can be attributed to the fact that for higher
values of P, effect of wall potential distribution on flow
characteristics can be strongly felt only when the tube
radius is of comparable magnitude relative to the electric
double layer (EDL) thickness, leading to a consequent
enhancement in overall rate of convective transport. How-
ever, as the ratio of tube radius to EDL thickness becomes
larger, local charge density gradients within the EDL turn
out to be rather inconsequential in determining the Nu2R,
which eventually settles to a stable value of �4.36 as
a ! 1.

Next, Nusselt number is plotted as a function of the
ratio a, for different values of the parameter S, as depicted
in Fig. 2. For these plots, value of the parameter P is kept
fixed at unity. It can be observed form Fig. 2 that higher
values of S imply lower values of asymptotic Nu2R as
a ! 1. This can be attributed to the fact that as S in-
creases, temperature difference between the tube wall and
the bulk fluid also increases. For a constant wall heat flux,
this implies a reduced value of the convective heat transfer
coefficient, and a consequent decrement in value of the
asymptotic Nu2R. Moreover, for lower values of the param-
eter a, a very high rate of volumetric heat generation would
eventually mean that temperature rise inside the fluid do-
main is significantly large (because of the very small fluid
volume) in comparison to the wall temperature. This, in
turn, implies that the convective heat transfer coefficient
tends to zero, to ensure a finite rate of wall heat flux. For
lower values of heat generation rate, however, such exces-
sive overheating may not occur, and non-zero values of
Nu2R can be obtained even for small values of a, in the
limiting sense as a ! 1.

Finally, in Fig. 3, we depict an interesting situation
when the flow takes place in presence of an adverse pres-
sure gradient (P = �0.5), under the influence of driving
electroosmotic effects. It can be seen from Fig. 3 that the
Nu2R is virtually zero for low values of the ratio a. This
can be attributed to the fact that for a fixed value of the
parameter P, a very small value of the ratio a (or equiva-
lently, the tube radius, R) implies that dp/dz is a sufficiently
large negative quantity to arrest any convective transport,
leading to very small values of Nu2R. However, for higher
values of a, the adverse effects of a negative dp/dz turn
out to be less prominent, and the Nu2R increases as a
consequence.
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